Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166848, 2024 01.
Article in English | MEDLINE | ID: mdl-37586438

ABSTRACT

N-propargylglycine prevents 4-hydroxyproline catabolism in mouse liver and kidney. N-propargylglycine is a novel suicide inhibitor of PRODH2 and induces mitochondrial degradation of PRODH2. PRODH2 is selectively expressed in liver and kidney and contributes to primary hyperoxaluria (PH). Preclinical evaluation of N-propargylglycine efficacy as a new PH therapeutic is warranted.


Subject(s)
Hyperoxaluria , Animals , Mice , Alkynes/metabolism , Glycine/therapeutic use , Hyperoxaluria/metabolism , Kidney/metabolism
2.
Brain Res ; 1826: 148733, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38128812

ABSTRACT

INTRODUCTION: There is an urgent need for new or repurposed therapeutics that protect against or significantly delay the clinical progression of neurodegenerative diseases, such as Huntington's disease (HD), Parkinson's disease and Alzheimer's disease. In particular, preclinical studies are needed for well tolerated and brain-penetrating small molecules capable of mitigating the proteotoxic mitochondrial processes that are hallmarks of these diseases. We identified a unique suicide inhibitor of mitochondrial proline dehydrogenase (Prodh), N-propargylglycine (N-PPG), which has anticancer and brain-enhancing mitohormesis properties, and we hypothesize that induction of mitohormesis by N-PPG protects against neurodegenerative diseases. We carried out a series of mouse studies designed to: i) compare brain and metabolic responses while on oral N-PPG treatment (50 mg/kg, 9-14 days) of B6CBA wildtype (WT) and short-lived transgenic R6/2 (HD) mice; and ii) evaluate potential brain and systemwide stress rebound responses in WT mice 2 months after cessation of extended mitohormesis induction by well-tolerated higher doses of N-PPG (100-200 mg/kg x 60 days). WT and HD mice showed comparable global evidence of N-PPG induced brain mitohormesis characterized by Prodh protein decay and increased mitochondrial expression of chaperone and Yme1l1 protease proteins. Interestingly, transcriptional analysis (RNAseq) showed partial normalization of HD whole brain transcriptomes toward those of WT mice. Comprehensive metabolomic profiles performed on control and N-PPG treated blood, brain, and kidney samples revealed expected N-PPG-induced tissue increases in proline levels in both WT and HD mice, accompanied by surprising parallel increases in hydroxyproline and sarcosine. Two months after cessation of the higher dose N-PPG stress treatments, WT mouse brains showed robust rebound increases in Prodh protein levels and mitochondrial transcriptome responses, as well as altered profiles of blood amino acid-related metabolites. Our HD and WT mouse preclinical findings point to the brain penetrating and mitohormesis-inducing potential of the drug candidate, N-PPG, and provide new rationale and application insights supporting its further preclinical testing in various models of neurodegenerative diseases characterized by loss of mitochondrial proteostasis.


Subject(s)
Alkynes , Glycine/analogs & derivatives , Huntington Disease , Neurodegenerative Diseases , Humans , Mice , Animals , Mice, Transgenic , Transcriptome , Huntington Disease/drug therapy , Huntington Disease/metabolism , Brain/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Gene Expression Profiling , Disease Models, Animal
3.
Breast Cancer Res Treat ; 202(2): 367-375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37500962

ABSTRACT

PURPOSE: Recent guidelines defined a new reporting category of ER-low-positive breast cancer based on immunohistochemistry (IHC). While low positivity of either hormone receptor is uncommon in invasive lobular carcinoma (ILC), we sought to investigate whether relatively low hormone receptor positivity was associated with tumor characteristics and patient outcomes in a single institutional cohort. METHODS: We searched an institutional database for cases of stage I-III ILC with available IHC reports. Based on prior published categories in ILC, ER was classified as low, medium, or high as defined by ER staining of 10-69%, 70-89%, and ≥ 90% respectively. PR low and high tumors were defined by < 20%, or ≥ 20% staining respectively. We used chi-squared tests, t-tests, and Cox proportional hazards models to evaluate associations between ER/PR categories and tumor characteristics or disease-free survival (DFS). RESULTS: The cohort consisted of 707 ILC cases, with 11% of cases categorized as ER low, 15.1% as medium, and 73.8% as high. The majority (67.6%) were PR high. Patients with ER low/medium expression were significantly younger, and more likely to also have PR low and/or HER2 positive tumors compared to those that were ER high. In a Cox proportional hazards model adjusting for age, stage, grade, pleomorphic histology, and treatment, ER category was not prognostic for DFS, but PR negative and PR low status each had significantly worse DFS compared to PR high status (HR 3.5, 95% CI 1.8-6.7, p < 0.001; and HR 2.0, 95% CI 1.1-3.5, p = 0.015, respectively). CONCLUSION: These findings highlight the relevance of quantifying ER and PR within ILC.


Subject(s)
Breast Neoplasms , Carcinoma, Lobular , Humans , Female , Carcinoma, Lobular/pathology , Breast Neoplasms/pathology , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Estrogens , Prognosis , Receptor, ErbB-2/metabolism , Biomarkers, Tumor/metabolism
4.
J Clin Oncol ; 40(35): 4071-4082, 2022 12 10.
Article in English | MEDLINE | ID: mdl-35862873

ABSTRACT

PURPOSE: To assess the long-term (20-year) endocrine therapy benefit in premenopausal patients with breast cancer. METHODS: Secondary analysis of the Stockholm trial (STO-5, 1990-1997) randomly assigning 924 premenopausal patients to 2 years of goserelin (3.6 mg subcutaneously once every 28 days), tamoxifen (40 mg orally once daily), combined goserelin and tamoxifen, or no adjuvant endocrine therapy (control) is performed. Random assignment was stratified by lymph node status; lymph node-positive patients (n = 459) were allocated to standard chemotherapy (cyclophosphamide, methotrexate, and fluorouracil). Primary tumor immunohistochemistry (n = 731) and gene expression profiling (n = 586) were conducted in 2020. The 70-gene signature identified genomic low-risk and high-risk patients. Kaplan-Meier analysis, multivariable Cox proportional hazard regression, and multivariable time-varying flexible parametric modeling assessed the long-term distant recurrence-free interval (DRFI). Swedish high-quality registries allowed a complete follow-up of 20 years. RESULTS: In estrogen receptor-positive patients (n = 584, median age 47 years), goserelin, tamoxifen, and the combination significantly improved long-term distant recurrence-free interval compared with control (multivariable hazard ratio [HR], 0.49; 95% CI, 0.32 to 0.75, HR, 0.57; 95% CI, 0.38 to 0.87, and HR, 0.63; 95% CI, 0.42 to 0.94, respectively). Significant goserelin-tamoxifen interaction was observed (P = .016). Genomic low-risk patients (n = 305) significantly benefitted from tamoxifen (HR, 0.24; 95% CI, 0.10 to 0.60), and genomic high-risk patients (n = 158) from goserelin (HR, 0.24; 95% CI, 0.10 to 0.54). Increased risk from the addition of tamoxifen to goserelin was seen in genomic high-risk patients (HR, 3.36; 95% CI, 1.39 to 8.07). Moreover, long-lasting 20-year tamoxifen benefit was seen in genomic low-risk patients, whereas genomic high-risk patients had early goserelin benefit. CONCLUSION: This study shows 20-year benefit from 2 years of adjuvant endocrine therapy in estrogen receptor-positive premenopausal patients and suggests differential treatment benefit on the basis of tumor genomic characteristics. Combined goserelin and tamoxifen therapy showed no benefit over single treatment. Long-term follow-up to assess treatment benefit is critical.


Subject(s)
Breast Neoplasms , Goserelin , Tamoxifen , Female , Humans , Middle Aged , Breast Neoplasms/drug therapy , Genomics , Goserelin/therapeutic use , Receptors, Estrogen , Tamoxifen/therapeutic use , Premenopause
5.
Hum Reprod ; 37(5): 1083-1094, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35362533

ABSTRACT

STUDY QUESTION: Is the increased future cardiovascular risk seen in women with endometriosis or polycystic ovary syndrome (PCOS) mitigated by functional insulin-like growth factor-1 receptor (IGF1R) single-nucleotide polymorphism (SNP) rs2016347 as previously shown in women with hypertensive disorders of pregnancy? SUMMARY ANSWER: This cohort study found that women with endometriosis or PCOS who carry a T allele of IGF1R SNP rs2016347 had a reduced future risk of developing cardiovascular disease (CVD) and associated risk factors, with risk reduction dependent on cohort era. WHAT IS KNOWN ALREADY: Women with endometriosis or PCOS have been shown to have an increased future risk of CVD and associated risk factors with limited predictive ability. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study took place in the Nurses' Health Study 2 (NHS2), which enrolled 116 430 participants in 1989 who were followed through 2015. The study population was analyzed in its entirety, and subdivided into entry (pre-1989) and after entry (post-1989) exposure cohorts. All NHS2 participants were eligible for inclusion in the study, 9599 (8.2%) were excluded for missing covariates. PARTICIPANTS/MATERIALS, SETTING, METHODS: The NHS2 enrolled female registered nurses from 14 different states who ranged in age from 25 to 42 years at study entry. Data were collected from entry and biennial questionnaires, and analysis conducted from November 2020 to June 2021. Cox proportional hazard models were used to assess risk of CVD, hypertension (HTN), hypercholesterolemia (HC) and type 2 diabetes, both with and without genotyping for rs2016347. MAIN RESULTS AND THE ROLE OF CHANCE: While women without endometriosis or PCOS, as a whole, demonstrated no impact of genotype on risk in either cohort, women with endometriosis carrying a T allele had a lower risk of CVD (hazard ratio (HR), 0.48; 95% CI, 0.27-0.86, P = 0.02) and HTN (HR, 0.80; 95% CI, 0.66-0.97, P = 0.03) in the pre-1989 cohort, while those in the post-1989 cohort had a decrease in risk for HC (HR, 0.76; 95% CI, 0.62-0.94, P = 0.01). Women with PCOS in the post-1989 cohort showed a significant protective impact of the T allele on HTN (HR, 0.44; 95% CI, 0.27-0.73, P = 0.002) and HC (HR, 0.62; 95% CI, 0.40-0.95, P = 0.03). LIMITATIONS, REASONS FOR CAUTION: Data on specific endometriosis lesion locations or disease stage, as well as on PCOS phenotypes were lacking. In addition, data on systemic medical treatments beyond the use of oral contraceptives were missing, and these treatments may have confounded the results. WIDER IMPLICATIONS OF THE FINDINGS: These findings implicate systemic dysregulation of the insulin-like growth factor-1 axis in the development of HTN, HC and clinical CVD in endometriosis and PCOS, suggesting a common underlying pathogenetic mechanism. STUDY FUNDING/COMPETING INTEREST(S): The NHS2 infrastructure for questionnaire data collection was supported by National Institute of Health (NIH) grant U01CA176726. This work was also supported in part by NIH and National Cancer Institute grant U24CA210990; as well, research effort and publication costs were supported by the Elizabeth MA Stevens donor funds provided to the Buck Institute for Research on Aging. The authors declare they have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Endometriosis , Polycystic Ovary Syndrome , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Cohort Studies , Diabetes Mellitus, Type 2/complications , Endometriosis/complications , Female , Heart Disease Risk Factors , Humans , Insulin-Like Growth Factor I , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/genetics , Pregnancy , Receptor, IGF Type 1 , Retrospective Studies , Risk Factors
6.
Int J Cancer ; 150(12): 2072-2082, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35179782

ABSTRACT

The metastatic potential of estrogen receptor (ER)-positive breast cancers is heterogeneous and distant recurrences occur months to decades after primary diagnosis. We have previously shown that patients with tumors classified as ultralow risk by the 70-gene signature have a minimal long-term risk of fatal breast cancer. Here, we evaluate the previously unexplored underlying clinical and molecular characteristics of ultralow risk tumors in 538 ER-positive patients from the Stockholm tamoxifen randomized trial (STO-3). Out of the 98 ultralow risk tumors, 89% were luminal A molecular subtype, whereas 26% of luminal A tumors were of ultralow risk. Compared to other ER-positive tumors, ultralow risk tumors were significantly (Fisher's test, P < .05) more likely to be of smaller tumor size, lower grade, progesterone receptor (PR)-positive, human epidermal growth factor 2 (HER2)-negative and have low Ki-67 levels (proliferation-marker). Moreover, ultralow risk tumors showed significantly lower expression scores of multi-gene modules associated with the AKT/mTOR-pathway, proliferation (AURKA), HER2/ERBB2-signaling, IGF1-pathway, PTEN-loss and immune response (IMMUNE1 and IMMUNE2) and higher expression scores of the PIK3CA-mutation-associated module. Furthermore, 706 genes were significantly (FDR < 0.001) differentially expressed in ultralow risk tumors, including lower expression of genes involved in immune response, PI3K/Akt/mTOR-pathway, histones, cell cycle, DNA repair, apoptosis and higher expression of genes coding for epithelial-to-mesenchymal transition and homeobox proteins, among others. In conclusion, ultralow risk tumors, associated with minimal long-term risk of fatal disease, differ from other ER-positive tumors, including luminal A molecular subtype tumors. Identification of these characteristics is important to improve our prediction of nonfatal vs fatal breast cancer.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
JAMA Netw Open ; 4(6): e2114716, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34170304

ABSTRACT

Importance: Benign breast diseases (BBDs) are common and associated with breast cancer risk, yet the etiology and risk of BBDs have not been extensively studied. Objective: To investigate the risk of BBDs by age, hormonal factors, and family history of breast cancer. Design, Setting, and Participants: This retrospective cohort study assessed 70 877 women from the population-based Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA) who attended mammographic screening or underwent clinical mammography from January 1, 2011, to March 31, 2013, at 4 Swedish hospitals. Participants took part in a comprehensive questionnaire on recruitment. All participants had complete follow-up through high-quality Swedish national registers until December 31, 2015. Pathology medical records on breast biopsies were obtained for the participants, and BBD subtypes were classified according to the latest European guidelines. Analyses were conducted from January 1 to July 31, 2020. Exposures: Hormonal risk factors and family history of breast cancer. Main Outcomes and Measures: For each BBD subtype, incidence rates (events per 100 000 person-years) and multivariable Cox proportional hazards ratios (HRs) with time-varying covariates were estimated between the ages of 25 and 69 years. Results: A total of 61 617 women within the mammographic screening age of 40 to 69 years (median age, 53 years) at recruitment with available questionnaire data were included in the study. Incidence rates and risk estimates varied by age and BBD subtype. At premenopausal ages, nulliparity (compared with parity ≥3) was associated with reduced risk of epithelial proliferation without atypia (EP; HR, 0.62; 95% CI, 0.46-0.85) but increased risk of cysts (HR, 1.38; 95% CI, 1.03-1.85). Current and long (≥8 years) oral contraceptive use was associated with reduced premenopausal risk of fibroadenoma (HR, 0.65; 95% CI, 0.47-0.90), whereas hormone replacement therapy was associated with increased postmenopausal risks of epithelial proliferation with atypia (EPA; HR, 1.81; 95% CI, 1.07-3.07), fibrocystic changes (HR, 1.60; 95% CI, 1.03-2.48), and cysts (HR, 1.98; 95% CI, 1.40-2.81). Furthermore, predominantly at premenopausal ages, obesity was associated with reduced risk of several BBDs (eg, EPA: HR, 0.31; 95% CI, 0.17-0.56), whereas family history of breast cancer was associated with increased risk (eg, EPA: HR, 2.11; 95% CI, 1.48-3.00). Conclusions and Relevance: These results suggest that the risk of BBDs varies by subtype, hormonal factors, and family history of breast cancer and is influenced by age. Better understanding of BBDs is important to improve the understanding of benign and malignant breast diseases.


Subject(s)
Age Factors , Breast Diseases/classification , Breast Neoplasms/complications , Adult , Aged , Breast Diseases/epidemiology , Breast Neoplasms/epidemiology , Female , Gonadal Steroid Hormones/analysis , Gonadal Steroid Hormones/blood , Hormone Replacement Therapy/methods , Hormone Replacement Therapy/standards , Hormone Replacement Therapy/statistics & numerical data , Humans , Middle Aged , Retrospective Studies , Risk Reduction Behavior , Sweden
9.
Amino Acids ; 53(12): 1927-1939, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34089390

ABSTRACT

Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.


Subject(s)
Alkynes/pharmacology , Antineoplastic Agents/pharmacology , Brain/drug effects , Glycine/analogs & derivatives , Proline Oxidase/antagonists & inhibitors , Proline/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Brain/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Glycine/pharmacology , Humans , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proline/analogs & derivatives , Proline/pharmacology , Thiazolidines/pharmacology , Transcriptome/drug effects , Unfolded Protein Response/drug effects
12.
Cell Rep ; 34(5): 108707, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33535033

ABSTRACT

RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(-) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(-) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(-) cases are required to understand this important LUAD subset.


Subject(s)
Adenocarcinoma of Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Tachykinins/metabolism , Whole Genome Sequencing/methods , Humans
13.
Mayo Clin Proc ; 95(12): 2684-2696, 2020 12.
Article in English | MEDLINE | ID: mdl-33168159

ABSTRACT

OBJECTIVE: To evaluate the impact of insulin-like growth factor 1 receptor variant rs2016347 on the risk for breast and nonbreast cancers and cardiovascular disease in women with a history of hypertensive disorders of pregnancy (HDP). PATIENTS AND METHODS: This retrospective cohort study included all parous women in the UK Biobank with prior rs2016347 genotyping (N=204,155), with enrollment taking place from March 2006 to July 2010. History of HDP was self-reported, and outcomes included breast and all nonbreast cancers, hospital diagnoses of hypertension and cardiovascular disease, and direct blood pressure measurements. RESULTS: Women with previous HDP had a higher risk for future hypertension and cardiovascular diagnoses, increased blood pressures, and lower risk for breast cancer compared with women without HDP, consistent with prior studies. Hazard ratios for all nonbreast cancers were unchanged. However, when taking genotype into account, HDP-positive women carrying at least 1 thymine (T) allele of rs2016347 had a lower risk for nonbreast cancer (hazard ratio, 0.59; 95% CI, 0.37 to 0.92; P=.02) and lower systolic blood pressure (-2.08±0.98 mm Hg; P=.03) compared with women with the guanine/guanine (GG) genotype with positive evidence of interaction (HDP:T allele) for both outcomes; P=.04 and P=.03, respectively. CONCLUSION: Women who experience HDP and carry a T allele of rs2016347 have 41% lower risk for developing nonbreast cancer and a lower systolic blood pressure of 2.08 mm Hg when compared with those with the GG genotype, suggesting a possible role of the insulin-like growth factor 1 axis for both cardiovascular and cancer risk in women with HDP.


Subject(s)
Hypertension, Pregnancy-Induced , Neoplasms , Pregnancy Complications, Cardiovascular , Receptor, IGF Type 1/genetics , Adult , Blood Pressure Determination/statistics & numerical data , Cohort Studies , Female , Heart Disease Risk Factors , Humans , Hypertension, Pregnancy-Induced/diagnosis , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/genetics , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/genetics , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Complications, Cardiovascular/diagnosis , Pregnancy Complications, Cardiovascular/epidemiology , Pregnancy Complications, Cardiovascular/genetics , Retrospective Studies , Risk Assessment/methods , United Kingdom/epidemiology
14.
Breast Cancer Res ; 22(1): 81, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32736587

ABSTRACT

BACKGROUND: Previous studies have identified and validated a risk-associated Active transcriptome phenotype commonly expressed in the cancer-adjacent and histologically normal epithelium, stroma, and adipose containing peritumor microenvironment of clinically established invasive breast cancers, conferring a 2.5- to 3-fold later risk of dying from recurrent breast cancer. Expression of this Active transcriptome phenotype has not yet been evaluated in normal breast tissue samples unassociated with any benign or malignant lesions; however, it has been associated with increased peritumor adipocyte composition. METHODS: Detailed histologic and transcriptomic (RNAseq) analyses were performed on normal breast biopsy samples from 151 healthy, parous, non-obese (mean BMI = 29.60 ± 7.92) women, ages 27-66 who donated core breast biopsy samples to the Komen Tissue Bank, and whose average breast cancer risk estimate (Gail score) at the time of biopsy (1.27 ± 1.34) would not qualify them for endocrine prevention therapy. RESULTS: Full genome RNA sequencing (RNAseq) identified 52% (78/151) of these normal breast samples as expressing the Active breast phenotype. While Active signature genes were found to be most variably expressed in mammary adipocytes, donors with the Active phenotype had no difference in BMI but significantly higher Gail scores (1.46 vs. 1.18; p = 0.007). Active breast samples possessed 1.6-fold more (~ 80%) adipocyte nuclei, larger cross-sectional adipocyte areas (p < 0.01), and 0.5-fold fewer stromal and epithelial cell nuclei (p < 1e-6). Infrequent low-level expression of cancer gene hotspot mutations was detected but not enriched in the Active breast samples. Active samples were enriched in gene sets associated with adipogenesis and fat metabolism (FDR q ≤ 10%), higher signature scores for cAMP-dependent lipolysis known to drive breast cancer progression, white adipose tissue browning (Wilcoxon p < 0.01), and genes associated with adipocyte activation (leptin, adiponectin) and remodeling (CAV1, BNIP3), adipokine growth factors (IGF-1, FGF2), and pro-inflammatory fat signaling (IKBKG, CCL13). CONCLUSIONS: The risk-associated Active transcriptome phenotype first identified in cancer-adjacent breast tissues also occurs commonly in healthy women without breast disease who do not qualify for breast cancer chemoprevention, and independently of breast expressed cancer-associated mutations. The risk-associated Active phenotype appears driven by a pro-tumorigenic adipocyte microenvironment that can predate breast cancer development.


Subject(s)
Adipocytes/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Adipocytes/metabolism , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cross-Sectional Studies , Female , Humans , Middle Aged , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Phenotype , Prognosis , Transcriptome
15.
J Oncol ; 2019: 6018432, 2019.
Article in English | MEDLINE | ID: mdl-31687025

ABSTRACT

BACKGROUND: Terminal duct lobular units (TDLUs) are the anatomic sites of breast cancer initiation, and breast tissue involution resulting in lower TDLU counts has been associated with decreased breast cancer risk. The insulin-like growth factor (IGF) pathway plays a role in breast involution, and systemic changes in this developmental pathway occur with hypertensive disorders of pregnancy (HDP), which have also been associated with lower breast cancer risk, especially in women carrying a functional variant of IGF1R SNP rs2016347. We proposed that this breast cancer protective effect might be explained by increased breast tissue involution. MATERIALS AND METHODS: We conducted a retrospective cohort study utilizing the Komen Tissue Bank, which collects breast tissue core biopsies from women without a history of breast cancer. Eighty white non-Hispanic women with a history of HDP were selected along with 120 nonexposed participants, and after genotyping for rs2016347, TDLU parameters were histologically measured blinded to participant characteristics from fixed biopsy sections. RESULTS: Stratified models by HDP status demonstrated that among HDP+ participants, those carrying two T alleles of rs2016347 had a decrease in TDLU counts of 53.2% when compared to those with no T alleles (p=0.049). Trend analysis demonstrated a multiplicative decrease in counts of 31.6% per T allele (p=0.050). Although no statistically significant interaction was seen between HDP status and T alleles, interaction terms showed increasingly negative values reaching a p value of 0.124 for HDP × 2T alleles. CONCLUSIONS: The observed statistically significant decrease in TDLU counts signifies increased breast epithelial involution in women with prior HDP who inherited the TT genotype of IGF1R SNP rs2016347. The increasing degree of breast involution with greater rs2016347 T allele copy number is consistent with the known progressive reduction in IGF1R expression in breast and other normal tissues.

16.
JAMA Oncol ; 5(9): 1304-1309, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31393518

ABSTRACT

IMPORTANCE: Patients with estrogen receptor (ER)-positive breast cancer have a long-term risk for fatal disease. However, the tumor biological factors that influence the long-term risk and the benefit associated with endocrine therapy are not well understood. OBJECTIVE: To compare the long-term survival from tamoxifen therapy for patients with luminal A or luminal B tumor subtype. DESIGN, SETTING, AND PARTICIPANTS: Secondary analysis of patients from the Stockholm Tamoxifen (STO-3) trial conducted from 1976 to 1990, which randomized postmenopausal patients with lymph node-negative breast cancer to receive adjuvant tamoxifen or no endocrine therapy. Tumor tissue sections were assessed in 2014 using immunohistochemistry and Agilent microarrays. Only patients with luminal A or B subtype tumors were evaluated. Complete long-term follow-up data up to the end of the STO-3 trial on December 31, 2012, were obtained from the Swedish National registers. Data analysis for the secondary analysis was conducted in 2017 and 2018. INTERVENTIONS: Patients were randomized to receive at least 2 years of tamoxifen therapy or no endocrine therapy; patients without recurrence who reconsented were further randomized to 3 additional years of tamoxifen therapy or no endocrine therapy. MAIN OUTCOMES AND MEASURES: Distant recurrence-free interval (DRFI) by luminal A and luminal B subtype and trial arm was assessed by Kaplan-Meier analyses and time-dependent flexible parametric models to estimate time-varying hazard ratios (HRs) that were adjusted for patient and tumor characteristics. RESULTS: In the STO-3 treated trial arm, 183 patients had luminal A tumors and 64 patients had luminal B tumors. In the untreated arm, 153 patients had luminal A tumors and 62 had luminal B tumors. Age at diagnosis ranged from 45 to 73 years. A statistically significant difference in DRFI by trial arm was observed (log rank, P < .001 [luminal A subtype, n = 336], P = .04 [luminal B subtype, n = 126]): the 25-year DRFI for luminal A vs luminal B subtypes was 87% (95% CI, 82%-93%) vs 67% (95% CI, 56%-82%) for treated patients, and 70% (95% CI, 62%-79%) vs 54% (95% CI, 42%-70%) for untreated patients, respectively. Patients with luminal A tumors significantly benefited from tamoxifen therapy for 15 years after diagnosis (HR, 0.57; 95% CI, 0.35-0.94), and those with luminal B tumors benefited from tamoxifen therapy for 5 years (HR, 0.38; 95% CI, 0.24-0.59). CONCLUSIONS AND RELEVANCE: Patients with luminal A subtype tumors had a long-term risk of distant metastatic disease, which was reduced by tamoxifen treatment, whereas patients with luminal B tumors had an early risk of distant metastatic disease, and tamoxifen benefit attenuated over time.

17.
Mol Cancer Ther ; 18(8): 1374-1385, 2019 08.
Article in English | MEDLINE | ID: mdl-31189611

ABSTRACT

Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (S-5-oxo: S-5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (N-PPG: N-propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor N-PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with N-PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that N-PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered in vivo Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (S-5-oxo and N-PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed in vitro when the PRODH suicide inhibitor, N-PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of N-PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.


Subject(s)
Glutaminase/antagonists & inhibitors , Glutaminase/genetics , Mitochondria/genetics , Mitochondria/metabolism , Proline Oxidase/antagonists & inhibitors , Proline Oxidase/genetics , Synthetic Lethal Mutations , Tumor Suppressor Protein p53/genetics , Animals , Binding Sites , Cell Line, Tumor , Enzyme Activation , Glutaminase/chemistry , Humans , Mice , Mitochondria/drug effects , Models, Molecular , Molecular Structure , Proline Oxidase/chemistry , Protein Binding , Structure-Activity Relationship , Transcriptional Activation , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Unfolded Protein Response
18.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625048

ABSTRACT

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Subject(s)
Neoplasms/pathology , Aneuploidy , Chromosomes/genetics , Cluster Analysis , CpG Islands , DNA Methylation , Databases, Factual , Humans , MicroRNAs/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , RNA, Messenger/metabolism
19.
Cell ; 173(2): 400-416.e11, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625055

ABSTRACT

For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale.


Subject(s)
Neoplasms/pathology , Databases, Genetic , Genomics , Humans , Kaplan-Meier Estimate , Neoplasms/genetics , Neoplasms/mortality , Proportional Hazards Models
20.
Protein Eng Des Sel ; 31(1): 17-28, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29301020

ABSTRACT

We present a strategy to discover recombinant monoclonal antibodies (mAbs) to specific cancers and demonstrate this approach using basal subtype breast cancers. A phage antibody library was depleted of antibodies to common cell surface molecules by incubation with luminal breast cancer cell lines, and then selected on a single basal-like breast cancer cell line (MDA-MB-231) for binding associated receptor-mediated endocytosis. Additional profiling against two luminal and four basal-like cell lines revealed 61 unique basal-specific mAbs from a pool of 1440 phage antibodies. The unique mAbs were further screened on nine basal and seven luminal cell lines to identify those with the greatest affinity, specificity, and internalizing capability for basal-like breast cancer cells. Among the internalizing basal-specific mAbs were those recognizing four transmembrane receptors (EphA2, CD44, CD73 and EGFR), identified by immunoprecipitation-mass spectrometry and yeast-displayed antigen screening. Basal-like breast cancer expression of these four receptors was confirmed using a bioinformatic approach, and expression microarray data on 683 intrinsically subtyped primary breast tumors. This overall approach, which sequentially employs phage display antibody library selection, antigen identification and bioinformatic confirmation of antigen expression by cancer subtypes, offers efficient production of high-affinity mAbs with diagnostic and therapeutic utility against specific cancer subtypes.


Subject(s)
Antibodies, Neoplasm , Antibody Affinity , Antibody Specificity , Breast Neoplasms/immunology , Single-Chain Antibodies , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/genetics , Antibodies, Neoplasm/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Neoplasm Proteins/chemistry , Neoplasm Proteins/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...